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Abstract

This work is devoted to the study of the Saint Cyprien (south of France) activated sludge WasteWater Treatment Plant (WWTP) process and to the
on-line estimation of chemical parameters (influent and effluent chemical oxygen demand, ammonia and suspended solids) not easily measurable
on-line. Their knowledge makes it possible to estimate the process efficiency and to provide reliable information for the plant monitoring.

A tool including Kohonen’s self-organizing maps and a multi-level perceptron is used. The Kohonen’s self-organizing maps neural network is
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pplied to analyze the multi-dimensional Saint Cyprien process data and to diagnose the inter-relationship of the process variables in
ludge WWTP. The multi-level perceptron is used as estimation tool.
The obtained results are satisfactory. The information provided by the estimation procedure is sufficiently reliable and precise to be exy

perators in charge of the plant monitoring and maintenance. It allows understanding how the system is evolving. The whole procedure
elf-organizing maps and multi-level perceptron) uses tools which proved to be efficient and complementary.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Since the implementation of European Directive 91/271/
EE, nutrient removal of WasteWater Treatment Plants

WWTPs) has been progressively adopted by existing and new
acilities. Nevertheless, when looking at nutrient removal, and
pecially nitrogen removal, on-line knowledge of influent qual-
ty could improve plant efficiency by implementing control
chemes[1]. It is possible to implement on-line ammonia or
OD sensors, but all of these sensors are based on indirect
easurements. The mechanism knowledge involved in wastew-
ter treatment, related to carbon and nitrogen removal, has been
idely studied since the presentation of ASM1 in 1986[2]. From

he actual process knowledge, it is possible to clearly identify
ariables affecting plant performances and the way the process
s affected by variations in influent quality and quantity.

In France, the dumping of effluents is subjected to the existing
egislation related to classified plants. Thus, the law no. 76-663

∗ Corresponding author. Tel.: +33 4 68 66 22 40; fax: +33 4 68 66 22 87.

of July 19, 1976 fixes quality standards for effluent water. L
iting values of parameters for effluent water were fixed by
decree of February 2, 1998, but even more strict limiting va
can be decided by means of specific decrees. The dump
effluents must also respects the objectives established by th
of January 3, 1992 in order to preserve a balanced manag
of water resources. WWTPs operations must be monitore
means of a rigorous follow-up of the various treatments
ciency. That is why the law requires the implementation
controlled self-monitoring[3].

First, the objective of this work is to highlight correlatio
between physicochemical parameters characterizing the
vated sludge process carried out at the Saint Cyprien waste
treatment plant (south of France), then to analyze the e
tion of such a system using a Kohonen’s self-organizing m
neural network. From a data set and an unsupervised
ing algorithm generating a taxonomy, using Kohonen’s
organizing maps (KSOM) makes it possible to simply v
alize in two dimensions all the interactions existing betw
variables. Thus, this tool is an invaluable help for opera
in charge of a WWTP monitoring by its capability of d
E-mail address: grieu@univ-perp.fr (S. Grieu). analysis, information simplification and visual representation.
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Kohonen’s self-organizing maps are also a very effective clus-
tering tool, by their ability to search for common properties
in a data file[4]. Next, the results obtained thanks to self-
organizing maps are used to carry out an estimation, using a
multi-level perceptron neural network, of parameters describ-
ing the good behavior of the Saint Cyprien organic matter
and nitrogen removal biological process. These parameters, not
easily measurable on-line, are the chemical oxygen demand
(COD), the ammonia (NH4) and the suspended solids (SS)
[5].

The correlations highlighted by the Kohonen’s self-
organizing maps neural network made it possible to effectively
choose the variables used, for their predictive character, as multi-
layer perceptron inputs. The clustering allows to carry out a
split training and makes it possible to facilitate, for the MLP
network, the comprehension of the various involved phenom-
ena. It allows to minimize the frequent risks of overfitting when
neural networks are used. Neural networks, a statistical tool for
data analysis[6], could be applied to establish a relation between
variables describing a process state and different measured quan-
tities. This relation depends, in a not always obvious way, on
the predictive variables used. The main characteristic of neural
networks is their capability to automatically establish relations
between variables by means of a mechanism called training or
learning[7]. Neural networks are designed for a specific appli-
cation and, after a training phase, are able to generate an esti-
m ning
p
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Fig. 1. Schematic diagram of the activated sludge process.

• Biological treatment tanks: Four parallel tanks that can be
used individually or jointly according to the period of the
year and the quantity of water to be treated (total volume of
15,600 m3).

• Clarifiers: Two individually usable parallel clarifiers (total
volume of 3200 m3).

2.3. Sludge line and complementary treatments

• Sludge dehydration: Three presses placed in a closed and ven-
tilated room (increase by 16% for dryness).

• Sludge composting: Compost used in agriculture (dehydrated
sludge and wood plates mixture).

• Treated water filtration: Two sand filters. Total capacity:
150 m3/h.

• UV disinfection: For bacterial decontamination with two pos-
sible files of, respectively, 850 and 150 m3/h throwing out
water into the “canal d’Elne”.

2.4. The activated sludge process

In general, the activated sludge process is a continuous or
semi continuous (fill and draw) aerobic method for biologi-
cal wastewater treatment, including carbonaceous oxidation and
nitrification[8]. This process is based on the aeration of wastew-
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. Saint Cyprien WWTP

.1. Plant presentation

The experimental data were provided by the Saint Cyp
WTP employees. Three towns are connected to this “acti

ludge” plant able to treat the wastewater of 80,000 inhabit
aint Cyprien (8653 inhabitants), Alenya (2339 inhabitants
atour Bas Elne (1711 inhabitants). This WWTP is a w
harges biological plant: denitrification and biological dep
hatation with physical and chemical complement. It has
articularity of being able to adapt operation to the seas
opulation variations. The town of Saint Cyprien is a sea
esort and its population increases considerably during the
er season. Therefore, the plant consists of parallel trea
odules characterizing its adaptability. At the end of the was
ter treatment sequence, a sludge composting unit allow
ludge re-use in agricultural applications. The plant is div
nto a water line and a sludge line. The water line consis
he primary treatment, the biological treatment tanks and
larifiers. The sludge line consists of the sludge dehydr
nd composting, the treated water filtration and finally the
isinfection.

.2. Water line

Primary treatment: Cleaning by tilted rake and grease and
removal.
-
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ater with flocculating biological growth, followed by separat
of treated wastewater from this growth. Part of this growt
then wasted, and the remainder is returned to the system
ally, the separation of the growth from the treated wastew
is performed by settling (gravity separation) but it may a
be done by flotation and other methods (Fig. 1). The biologi-
cal component of the activated sludge system is compris
microorganisms. Bacteria, fungi, protozoa and rotifers co
tute the biological component or biological mass, of activ
sludge. In addition, some metazoa, such as nematode w
may be present. However, the constant agitation in the
tion tanks and sludge recirculation are deterrents to the gr
of higher organisms. The microorganisms that are of gre
numerical importance in activated sludge are bacteria, w
occur as microscopic individuals from one micron in size
visible aggregations or colonies of individuals. Some bac
are strict aerobes (they can only live in the presence of oxy
whereas others are anaerobes (they are active only in the ab
of oxygen).
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Fig. 2. Kohonen network structure.

3. Materials and methods

3.1. Kohonen’s self-organizing maps

Kohonen’s self-organizing maps are very popular in the field
of data processing. They belong to the category of unsupervised
neural networks allowing pattern classification without prelim-
inary knowledge. The pattern classification application can be
regarded as a specific case of the function approximation. The
mapping is done from the input space to a finite number of output
classes.

Kohonen’s self-organizing maps can be used both to highligh
groups of elements with similar characteristics and for projecting
the data non-linearity onto a lower dimension display (Fig. 2).
They create effectively spatially organized internal representa
tions of input signals features.

The number of groups is unknown and the network has
to identify elements common characteristics. The network is
adjusted according to statistical regularities and builds intern
representations in order to create groups[9]. It is an unsuper-
vised learning. Thus, the Kohonen analysis makes it possible t
represent data, preserving a topology. Close data (in the inpu
space) will have close representations in the output space an
will be placed in the same class or in close classes. Featur
maps are trained on input vectors using rules that aim to itera
tively arrange the neurons in the maps so as to preserve inpu
d
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3.2. Kohonen training algorithm

The Kohonen training algorithm is a simple procedure which
consists of randomly selecting a training pattern, determining
the winning node, updating the weights of all nodes within
the winning neighborhood and modifying the training param-
eters[9]. In determining the winning unit, a certain distance
metric is used, and the node, which registers the least distance
relative to the current training pattern is referred to as the win-
ning unit (the best matching unit). Changes in the weights will
subsequently involve only nodes in the region surrounding this
winning unit. The distance metric to be used in the algorithm
is left unspecified, although the most common metrics used are
the Euclidean distance, the Manhattan distance and the cosine
of the angle of the current input vector and each of the nodes
weight vectors. The output of each neuron can be computed
according to:

yi =
n∑

j=1

mi,jxj (1)

wheren is the number of inputs,mi,j a synaptic weight andxj is
thejth component of the input vectorX. The learning algorithm
can be described as follows:

1. Determine both map topology and number of neurons. The
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Kohonen networks consist of an input layer and an ou

ayer, called competitive layer or Kohonen layer.
All the input neurons are connected to each neuron o

utput layer (balanced connections).
Every individual to be classified is represented by a m

imensional vector (input vector). To each individual is affe
n output neuron which represents the center of the class
eurons of the output layer compete among themselves: fo
euron corresponds an output space, generally a two dimen
pace defined by a grid.

Only the best gains, it is the “winner takes all” method.
raining is described as competitive. Kohonen’s self-organ
aps are connection networks with a fixed dimensionality al

ng to simply carry out a projection of a data space on a 2D
t

-
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number of neurons is selected as big as possible wit
neighborhood size controlling the smoothness and gen
ization of the mapping.

. Initialize the weight vectors with small random values.

. Select an input patternX at random from the data set.

. Find the best matching neuronsmc with an appropriate dis
tance metric, usually the Euclidian distance. Also find th
of neurons that composes the neighborhoodNc aboutmc. The
best matching neuronsmc is the closest to the input vect
X(t) according to:

||X − mc|| = mini{||X − mi||} (2)

where||·|| is the distance measure. The best matching
denoted asc, is the unit whose weight vector has the grea
similarity with the input patternX.

. Modify the weights of the neurons within the winning nei
borhood using the following learning rule:

mi(t + 1) = mi(t) + α(t)[X(t) − mi(t)] ∀i ∈ Nc(t) (3)

mi(t + 1) = mi(t) ∀i /∈ Nc(t) (4)

where α(t) is a suitable decreasing function of tim
0≤ α(t) ≤ 1. α(t) is called “gain” and it decreases
the number of training cycles increases. It controls
amount of weight change that will take place per train
cycle.

The neighborhood size is also decreasing in value a
number of training cycles increases. This winning neigh
hood is the set of nodes surrounding the winning unit w
will undergo weight update. Outside nodes in the map
not change their weights. Note that since the winning
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would depend on the training pattern presented, the winning
neighborhood moves around the map throughout the training
phase.

The neighborhood size is typically denoted by a “radius”,
which is the number of “hops” from one node to another. In
a rectangular map, the radius between a given node and all
its eight direct neighbor nodes is 1. Its distance to the 16 next
nearest nodes has a radius of 1 and so on. There are no hard
and fast rules as to the initial value of the neighborhood size.
But setting it initially to be equal to the size of longest map
dimension (height or width of map in terms of number of
nodes) is adequate. This will decrease in value as explained
below.

6. Stop, if some optimal number of iteration steps is done, or
else continue from step 3.

3.3. Multi-level perceptron

Linear approximation networks are too restrictive to treat
such a process and non-linear approximation networks offer
much greater capability. Thus, the used neural network is a multi-
level perceptron (MLP). This type of neural network is known
as a supervised network because it requires a desired output in
order to learn. It is based on the classical perceptron network
introduced by Rosenblatt[10]. It includes a number of active
n to
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Table 1
Saint Cyprien WWTP process variables

Variables (unit) Description

Rain (mm/day) Rain
Qinfluent (m3/day) Influent flow
SSinfluent (mg/l) Suspended solids in the influent
CODinfluent (mg/l) Chemical oxygen demand in the influent
DO (mg/l) Dissolved oxygen in the first aerated basin
Qair (m3/day) Influent air flow in the first aerated basin
TKNinfluent (mg/l) Total Kjeldahl nitrogen in the influent
NH4 influent (mg/l) Ammonia in the influent
NO2 influent (mg/l) Nitrite in the influent
NO3 influent (mg/l) Nitrate in the influent
TPinfluent (mg/l) Total phosphorus in the influent
Qeffluent (m3/day) Effluent flow
SSeffluent (mg/l) Suspended solids in the effluent
CODeffluent (mg/l) Chemical oxygen demand in the effluent
TKNeffluent (mg/l) Total Kjeldahl nitrogen in the effluent
NH4 effluent (mg/l) Ammonia in the effluent
NO2 effluent (mg/l) Nitrite in the effluent
NO3 effluent (mg/l) Nitrate in the effluent
TPeffluent (mg/l) Total phosphorus in the effluent

gence[13]. Thus, the two following user-definable parameters,
because of their great influence on the learning phase efficiency,
were optimized[5]:

• The number of iterations completed during the training phase.
• The number of neurons placed in the network hidden

layer.

The MLP and many others neural networks learn using an
algorithm called “backpropagation”. With this algorithm, input
data are repeatedly presented to the neural network. With each
presentation the neural network output is compared to the desired
output (the target) and an error is computed. This error is then
fed back (backpropagated) to the network and used to adjust
the weights such that the error decreases with each iteration and
the neural model gets closer and closer to producing the desired

ural n
eurons, the basic building block[11], connected together
orm a network. The used multi-level perceptron used con
f one layer of linear output neurons and one hidden lay
on-linear neurons (Fig. 3) [12].

According to our tests, more than one hidden layer pr
o be unproductive. It causes slower convergence in the
ropagation learning because intermediate neurons not di
onnected to output neurons have very small weight cha
nd learn very slowly.

Although the relationship between the network performa
nd its hidden layer size is not well understood, a principle
e used as a guide: the principle of generalization versus co

Fig. 3. MLP ne
 etwork structure.
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Fig. 4. Saint Cyprien WWTP process variables.
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Fig. 4. (Continued ).
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Fig. 4. (Continued ).

output. The minimization algorithm uses an iterative process and
various weight values are explored with the aim of minimizing
the quadratic criterion on the sum of squared error made during
the learning phase[14].

3.4. Levenberg–Marquardt (LM) algorithm

Several training methods were used, but the Levenberg–
Marquardt algorithm proved to be the fastest and the most robust

or the
Fig. 5. Component planes f
 process variables and U-matrix.
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[15]. It is particularly adapted for networks of moderate size and
has memory reduction feature for use when the training set is
large[16].

Like the quasi-Newton methods, the Levenberg–Marquardt
algorithm was designed to approach second-order training speed
without having to compute the Hessian matrix.

When the performance function has the form of a sum of
squares, then the Hessian matrix can be approximated as:

H = JTJ (5)

The gradient can be computed as:

g = JTe (6)

whereJ is the Jacobian matrix that contains first derivatives of
the network errors with respect to the weights and biases and
e is a vector of network errors. The Jacobian matrix can be
computed through a standard backpropagation technique that
is much less complex than computing the Hessian matrix. The
Levenberg–Marquardt algorithm uses this approximation to the
Hessian matrix in the following Newton-like update:

xk+1 = xk − [JTJ + µI]
−1

JTe (7)

When the scalarµ is zero, this is just Newton’s method, using
the approximate Hessian matrix. Whenµ is large, this becomes
g od is
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projects/somtoolbox/). The most significant features of this tool-
box are its visualization capabilities[9]. Two different kinds
of data presentation tools for the KSOM were used: (1) the
component planes and scatter plots for the visualization of the
relationships among the process variables and (2) distance matri-
ces and K-means clustering algorithm for the visualization of
clusters. The most widely used distance matrix is the unified dis-
tance matrix (U-matrix). In this method, a matrix of distances
between the weight vectors of map units and their neighbors
is calculated. The relative distances between map nodes on the
map can be seen.Fig. 5 presents the component planes for the
data set. Each hexagon represents one map node and its color
tells the value of the component in that node. Nodes represent-
ing high values are in black and nodes representing low values
are in white. These component planes highlight interesting cor-
relations between variables and allow to choose the multi-level
perceptron inputs used during the second phase of this work to
estimate the state of the Saint Cyprien activated sludge process.

COD, NH4 and SS are physicochemical parameters, very
difficult to measure on-line and characterizing the studied bio-
logical process of organic mater and nitrogen removal[18].

Suspended solids are a significant visual quality factor
for water. COD represents the oxygen quantity necessary for

Fig. 6. The seven clusters (operation classes) characterizing the Saint Cyprien
WWTP process.
radient descent with a small step size. Newton’s meth
aster and more accurate near an error minimum, so the a
o shift towards Newton’s method as quickly as possible. T

is decreased after each successful step and is increase
hen a tentative step would increase the performance fun

n this way, the performance function will always be reduce
ach iteration of the algorithm[17].

. Results and discussions

In the present section, both results of the Saint Cyp
WTP study using Kohonen’s self-organizing maps and C
H4 and SS estimation using a multi-level perceptron
escribed.

.1. Results of the Saint Cyprien WWTP study using
SOMs

Raw data obtained from the Saint Cyprien WWTP consi
any process variables (Table 1) and describe the plant operat
uring years 2000, 2001, 2002 and 2003.Fig. 4presents the da
et for all the process variables and year 2002. These var
re only available as daily average data and are measu
ifferent units having different magnitudes. Then, if raw d
re fed into the KSOM neural network, variables having a la
agnitude are given unequal importance due to the natu

he weight update procedure. Standardizing the dynamic
f each variable in the input vector is required and will impr

he model performance.
In this work, all the simulations are done using MATLABTM

nd a Self-Organizing Maps Toolbox (http://www.cis.hut.fi
is
,
ly
.

s
in

http://www.cis.hut.fi/projects/somtoolbox/
http://www.cis.hut.fi/projects/somtoolbox/
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chemically eliminating the organic matter. NH4 presence in
water is a human or industrial contamination sign. The knowl-
edge of these parameters in entry and exit of the plant allows
estimating the process efficiency. They were used as targets of
the estimation phase.

By comparing the component planes, DO,Qin andQair seem
to be positively correlated with COD (influent), NH4 (influent)
and SS (influent). Similar black and white areas on the various
maps allow to highlight these correlations. All these variables
present high values in the lower part of their component plane
and weak values in the upper part. According to these results and
that DO,Qin andQair are easily on-line measured parameters at
the Saint Cyprien WWTP, these three variables were used as
MLP inputs to estimate COD (influent), NH4 (influent) and SS
(influent). The estimation of COD (effluent), NH4 (effluent) and
SS (effluent) is identically done but using DO,Qin, Qair, COD
(influent), NH4 (influent) and SS (influent) as MLP inputs.

4.2. Analysis of the cluster structure

One important technique often used in knowledge extrac-
tion for process diagnosis is a cluster analysis that generates the
classification automatically from the raw process data[19]. Ini-
tially, the cluster structure of the Kohonen self-organizing maps
is investigated by the visual inspection of the U-matrix. High
values (dark shades) on the U-matrix corresponds to a large
distance between neighboring nodes, and thus indicate cluster
borders on the maps. Lower values (white shade) describe neigh-
boring nodes that are close to each other in the input space.

The U-matrix being difficult to interpret, the K-means clus-
tering algorithm was used to find the optimal number of clus-
ters by partitioning the maps. The Davies-Bouldin clustering
index shows that there are seven clusters i.e. seven opera-
tion classes characterizing the Saint Cyprien pollution removal
process (Fig. 6). The K-means clustering algorithm allows to
Fig. 7. Estimation results for COD, N
H4 and SS (influent and effluent).
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Table 2
Average relative errors for COD, NH4 and SS estimation

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

COD (influent) (%) 9.8 10.5 9.2 11.4 12.3 9.7 13.7
NH4 (influent) (%) 12.8 13.4 12.4 11.9 13.4 14.1 15.2
SS (influent) (%) 14.1 10.9 12.1 13.6 13.3 11.7 14.2
COD (effluent) (%) 13.3 14.9 14.8 15.4 13.1 13.6 14.1
NH4 (effluent) (%) 14 13.8 13.2 14.9 14.2 14.3 16.3
SS (effluent) (%) 15.9 16.2 14.9 15.6 15.1 14.4 17.4

highlight significant differences in operation and to carry out a
fractional training for the estimation phase using the MLP. The
network learning phase can be conducted separately for each
class and is so more precise and effective[5].

The seven operation classes can be described as follows:

• Classes 1 and 2 describe the plant operation during the sum-
mer season. The four parallel tanks are used during this period
according to the quantity of water to be treated and the pol-
lution to be removed. Class 1 is mainly composed of August
days and class 2 is composed of June and July days.

• Classes 3–7 describe the plant operation during the remain-
der of the year with only two of the parallel tanks in action.
Differences between these classes depend on the period of the
year and the quantity of water to be treated.

4.3. Estimation results for COD, NH4 and SS

This section presents the results obtained for the COD, NH4
and SS estimation before the pollution removal treatment (influ-
ent) and after this pollution removal treatment (effluent), using
the seven operation classes defined by K-means clustering. Only
graphs for class 1 are presented (Fig. 7) butTable 2summarizes
all the obtained estimation results.

As previously mentioned, DO,Qin and Qair were used as
M
(
S
( or
e learn
i d to
b s
t

, 15
n tions
w

ter-
i y. Th
o be
e TP
m

try
( vel
b le to
k val

process efficiency corresponds (or not) to the fixed objectives for
the plant. This information completes the process expert knowl-
edge and available on-line sensors measurements.

As previously mentioned,Table 2summarizes the obtained
results for all the operation classes highlighted by K-means clus-
tering. Average relative errors are satisfactory, ranging between
9.2% (influent COD for class 3) and 17.4% (effluent SS for class
7), according to the strongly non-linear nature of the studied pro-
cess. However, these results show that the effluent parameters
estimation seems to be globally more difficult than the influent
one. The biological process efficiency has an important influence
on the effluent parameters estimation.

5. Conclusion

This paper presents a tool based on Kohonen’s self-
organizing maps and a multi-level perceptron, to obtain a COD,
NH4 and SS on-line estimation for the Saint Cyprien WWTP
influent and effluent. These parameters are not on-line easily
measurable and are generally evaluated by laboratory analyses
which can be relatively long. Knowledge of these parameters,
at WWTP entry and exit, is fundamental, and makes it possible
to estimate the correct working of the organic pollution removal
process. Their estimation by neural networks was carried out
using real data obtained from the Saint Cyprien WWTP.
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LP inputs to estimate COD (influent), NH4 (influent) and SS
influent). The estimation of COD (effluent), NH4 (effluent) and
S (effluent) is identically done but using DO,Qin, Qair, COD

influent), NH4 (influent) and SS (influent) as MLP inputs. F
ach class, 80% of the data set were reserved for the MLP

ng phase and 20% for the validation. This distribution prove
e a good choice and is the most frequently used.Fig. 7present

he estimation results using the validation subset.
According to various tests, for the 7 operation classes

eurons were placed in the MLP hidden layer and 15 itera
ere carried out during the learning phase[5].
For each WWTP operation highlighted by K-means clus

ng, the estimation results can be considered as satisfactor
btained information is sufficiently reliable and precise to
xploitable by operators in charge of the Saint Cyprien WW
onitoring and maintenance.
Indeed, COD, NH4 and SS on-line knowledge at plant en

influent) and exit (effluent) allows estimating the pollution le
efore and after biological treatment. It makes it possib
now how the system is evolving and if the pollution remo
-

e

A preprocessing phase using Kohonen’s self-organizing
ompleted the neuronal estimation phase in order to imp
he results obtained from real data characterizing a stro
on-linear process. Kohonen’s self-organizing maps are

o highlight, by means of their visualization capabilities, in
sting correlations between variables and significant differe

n plant operation (operation classes). These correlations
hoosing suitable MLP inputs to carry out the COD, NH4 and
S estimation. The highlighted operation classes allow to
ut a fractional MLP training which facilitates the phenom
omprehension by the neural network.

The obtained results are satisfactory. The information
ided by the estimation procedure is sufficiently reliable
recise to be exploitable by operators in charge of the plant

toring and maintenance. It allows understanding how the sy
s evolving. The whole procedure (Kohonen’s self-organi

aps and multi-level perceptron) uses tools which proved
fficient and complementary. Kohonen’s self-organizing m
eural network provides useful information by selecting inte

ng combinations of process variables and extracting knowl
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contained in multi-dimensional data. The multi-level perceptron
neural network proved to be an effective estimation and predic-
tion tool.
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